creased from 2.06 to 3.50 mdynes/A, while the interaction constant between the free X-O bond and the bound ones was left unchanged at 2.06 mdynes/A. Next, the  $F_{\tau\tau}$  between the two bound X–O bonds was increased and simultaneously the free-bound  $F_{rr}$  was decreased in such a way as to keep the sum of the three force constants constant, a procedure exactly analogous to the polarization of the stretching force constants described above. Thirdly, with the  $F_{\tau\tau}$  back at their original value, the angle deformation force constant for the bound O–X–bound O angle,  $F_{\theta}$ , was increased from 0.54 to 1.20 mdynes/A, while that for the other two O–X–O angles,  $F_{\alpha}$ , remained set at 0.54 mdyne/A. Then  $F_{\theta}$  was increased and  $F_{\alpha}$  was decreased, so that the sum  $F_{\theta} + 2F_{\alpha}$  remained constant, and, finally, a bond force constant polarization was chosen ( $\Delta F_{XO}$  = 1.90) and one set from each of the above calculations was repeated.

Comparison of the results obtained with frequencies reported in ref 2g, 7, and 17 shows, however, that none of these approximations is satisfactory. The first, increase of bound  $F_{\tau\tau}$ , gives values for  $\nu_1$ ,  $\nu_3$ , and  $\nu_8$  that are all too low, even at the highest value of  $F_{rr}$  used, which is nearly 75% higher than the value found for the free  $XO_3$  anion. In addition,  $\nu_2$  is shifted slightly  $(\sim 15-40 \text{ cm}^{-1})$  in the wrong direction. The second approximation, polarization of the bond interaction force constants, gives too small a splitting of  $\nu_1$  and  $\nu_7$ and too large a splitting of  $\nu_3$  and  $\nu_8$ . It also gives too low a value for  $\nu_8$  by as much as 100 cm<sup>-1</sup>. The change in  $F_{\theta}$  alone does not give a large enough splitting of  $\nu_1 - \nu_7$  for a reasonable  $\nu_3 - \nu_8$  splitting. Moreover,  $\nu_7$  is 100-160 cm<sup>-1</sup> high. When the bond deformation force constants are polarized, we find that in order to get the  $\nu_1 - \nu_7$  splitting to the right order of magnitude, it is necessary to use force constants which give much too large a splitting of  $\nu_3$  and  $\nu_8$ . Also  $\nu_8$  is too low.

When each of these changes, in turn, is imposed upon a force field where the bond force constants have been polarized by an amount  $\Delta F_{\rm XO} = 1.90$ , the results are as follows: a change in the bound  $F_{\tau\tau}$ , which gives a reasonable  $\nu_1 - \nu_7$  splitting, shifts  $\nu_2$  by 50 cm<sup>-1</sup> in the wrong direction and gives much too large (by  $180 \text{ cm}^{-1}$ ) a splitting for  $\nu_3$  and  $\nu_8$ . Simultaneous change in the bound-bound and free-bound  $F_{rr}$  gives only slightly better results: no shift in  $\nu_2$ , correct splitting of  $\nu_1$  and  $\nu_7$ , but too large a splitting of  $\nu_3$  and  $\nu_8$ , with  $\nu_8 \ 100-200$ cm<sup>-1</sup> too low. Changing  $F_{\theta}$  to get a reasonable value for the  $\nu_1 - \nu_7$  splitting makes both  $\nu_1$  and  $\nu_7$  60–100 cm<sup>-1</sup> too high and also results in a  $\nu_3 - \nu_8$  splitting which is about 60 cm<sup>-1</sup> too large. Changing  $F_{\theta}$  and  $F_{\alpha}$  gives, again, too large a  $\nu_3 - \nu_8$  splitting, with  $\nu_8 \ 100 - 150 \ \mathrm{cm}^{-1}$ too low.

We feel that this rather detailed analysis of what we consider are all the reasonable possibilities for change in our approach is necessary to demonstrate the utility of the simple bond polarization approximation. Not only does it reproduce experimental frequencies more closely, but it does so using what seems to be the most realistic approximation. Changing other force constants, however, necessitates assumptions about electronic distributions in the molecules which are not justified in the light of our present knowledge. Moreover, the value of such a simple force field in spectrum diagnosis and assignment is lost as soon as it is complicated by such little-understood factors.

Acknowledgment.—The authors are glad for this opportunity to express their gratitude to Dr. J. A. D. Matthew for many helpful discussions.

CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT, THE UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT

## The Preparation and Properties of Some Ternary Nitrides of Strontium and Barium with Rhenium and Osmium

## BY FRANK K. PATTERSON AND ROLAND WARD

Received February 18, 1966

Ternary nitrides of rhenium are formed by heating mixtures of strontium or barium nitride with metallic rhenium in pure nitrogen at atmospheric pressures. Under these conditions, osmium gives a ternary nitride only with barium. The isotypic compounds  $Sr_8Re_8N_{10}$ ,  $Ba_9Re_8N_{10}$ , and  $Ba_9Os_3N_{10}$  appear to be orthorhombic. They are all good conductors of electricity and are readily hydrolyzed. The magnetic properties suggest strong interaction between the transition metal ions. In the Ba-Re-N and Sr-Re-N systems, there exist thermally unstable compounds in which the rhenium has a higher oxidation state and the ratio of alkali metal to rhenium is higher than 3. The compound  $Sr_{27}Re_5N_{28}$  has a cubic structure related to that of sodium chloride. The proposed structure is derived on the basis of ordered nitrogen vacancies. The rhenium atoms are distributed over the cation sites in such a way that no nitrogen is common to two rheniums. The magnetic susceptibility of this compound is temperature independent from 77 to  $300^{\circ}$ K. No intermediate phases were observed in the Ba-Os-N system.

Among the ternary oxides of the transition metals, there are notable differences between those formed with small cations such as lithium and magnesium and those obtained with the larger cations of groups I and II. The former often yield phases based on the sodium chloride, spinel, ilmenite, or olivine structures whereas the latter usually give phases with structures related to perovskite, pyrochlore, or garnet which offer sites of larger coordination numbers.

The ternary nitrides formed by lithium and various transition metals have been extensively studied by Juza and his co-workers,<sup>1</sup> who have found that many of the compounds have the antifluorite structure. The transition metals in these compounds all adopt their highest oxidation state giving rise to formulas such as  $\text{Li}_5\text{TiN}_3$ ,  $\text{Li}_7\text{NbN}_4$ , and  $\text{Li}_9\text{CrN}_5$ . Superlattices were observed in most of the phases. All of the metal ions in these compounds occupy tetrahedral sites.

As a basis for the selection of appropriate cations, we assumed that compounds of the type  $AMN_8$  would be likely products based on the close packing of  $AN_8$  layers where A is a large cation analogous to the structures of many ternary oxides.<sup>2</sup> Since the available large cations all have charges of 3 or less, the choice of M cations would be restricted to elements of potentially high oxidation state. These are the transition metals of periods 5 and 6 in groups VI to VIII.

No compound of this type was identified. We found, however, that molybdenum, tungsten, rhenium, and osmium, none of which combines directly with nitrogen to give binary nitrides, yield ternary nitride phases when heated with barium or strontium nitrides in an atmosphere of nitrogen. The compounds formed by molybdenum and tungsten appear to have the sodium chloride structure but they were not obtained pure and their composition is not yet known. This paper deals with the ternary nitrides formed by barium and strontium with rhenium and by barium with osmium.

## **Experimental Section**

(1) Materials.—Rhenium metal powder (99.99%) was washed with 6 N HCl to remove trace amounts of iron (14 ppm). The osmium metal powder (99.8%) contained no ferromagnetic impurities. Barium (99.5%) and strontium (98.99%) were massive. The binary nitrides of these elements were prepared by heating the metals in dry, oxygen-free nitrogen for several days. For barium, 600° was the best temperature; for strontium, 750°.

(2) General Procedure.—Since most of the reactants and all of the products were sensitive to moisture, all of the operations were carried out in an atmosphere of dry nitrogen. The reactants were intimately mixed in a Spex-500 mixer, pelleted, and heated in molybdenum-foil boats in a silica tube in nitrogen at atmospheric pressure. The reaction could be followed by observing the absorption of nitrogen which usually began at about 700°. The thermal instability of most of the products placed an upper limit on the temperatures. Most of the reactions had to be carried out in the temperature range 700-850°. Under these conditions the reactions occurred very slowly and tedious heating cycles were required to produce pure phases. Samples were periodically removed for examination by X-ray powder diffraction. The ground sample was dispersed in molten vaseline and, when the mass had solidified, was spread on a glass slide. This afforded sufficient protection from the atmosphere to obtain a diffractometer tracing. Some phases were observed which could not be isolated. Those which were obtained as a single phase were analyzed chemically: strontium and barium as sulfate, rhenium by precipitation as nitron perrhenate, and osmium by decomposition to metallic osmium. Nitrogen in most cases was



Figure 1.—Variation of nitrogen absorption as a function of Ba:Re by mixtures of Ba<sub>3</sub>N<sub>2</sub> and Re.

determined by the Kjeldahl method but, occasionally, also by measuring the nitrogen absorbed in the preparation. X-Ray data were obtained with a GE XRD-5 diffractometer, using Cu K $\alpha$  radiation and a proportional counter.

The Ba-Re-N System .--- X-Ray evidence indicated that the reaction between barium nitride and rhenium metal in nitrogen gives first an unstable ternary phase which changes on heating in vacuo to a thermally stable phase. The presence of barium nitride in the mixture is difficult to detect because of its poor diffraction pattern. Consequently, it was difficult to determine the proportions of barium and rhenium in the intermediate phase. As estimate of the Ba: Re ratio was obtained by measuring the amount of nitrogen absorbed by various mixtures of barium nitride and rhenium. The results shown in Figure 1 give this ratio as 3.5. By heating a mixture of this proportion in nitrogen, it was observed that absorption of the gas began at 700°. This temperature was maintained for 24 hr and again for 8 hr after regrinding the product. A final heating at 750° for 24 hr gave a deep red-brown product which contained 8.2% N by Kjeldahl. The X-ray powder diffraction pattern, although diffuse, clearly indicated a unique phase. It could be indexed on the basis of a hexagonal cell (a = 10.56 A, c = 11.83 A). By heating this phase under continuous evacuation at 850° for 24 hr, a black crystalline product was obtained. The use of an excess of barium nitride in the mixture gave a product of improved crystallinity. The excess barium nitride decomposes with sublimation of the barium upon heating in vacuo at 750-850°. It was found that the excess barium nitride could also be removed by dissolving it in liquid ammonia containing 0.2-0.4% NH<sub>4</sub>NO<sub>8</sub>. The black ternary nitride is insoluble in this solution. Anal. Calcd for Ba<sub>9</sub>Re<sub>3</sub>N<sub>10</sub>: Ba, 63.89; Re, 28.87; N, 7.24. Found: Ba, 62.61; Re, 28.88; N, 7.24. The diffraction pattern for this compound is given in Table I. It can be indexed as shown on the basis of an orthorhombic cell: a = 10.94 A, b = 8.09 A, c = 30.40 A. The density measured pycnometrically in CCl<sub>4</sub> was 7.05 g/ml (calculated 7.15 for six molecular formulas per unit cell). A qualitative test indicated that the compound is a good conductor of electricity.

The Sr-Re-N System.—Strontium nitride differs from barium nitride in giving a sharp X-ray powder diffraction pattern. Its presence can readily be detected in a mixture. Mixtures of strontium nitride and rhenium metal powder when heated at  $800-850^{\circ}$  in dry nitrogen gave a mixture of two phases, one of which was never obtained pure. The other, a cubic phase, was obtained pure by the following procedure. An intimate mixture of 9 moles of strontium nitride and 5 moles of rhenium metal was heated in nitrogen at 460 and 750° for 24 hr at each temperature. The temperature was then raised to  $810^{\circ}$  and was maintained at that point until the absorption of nitrogen ceased. From 24 to 36 hr was usually required. The mixture was removed from the furnace, reground, and again heated at  $810^{\circ}$  for

<sup>(1)</sup> R. Juza, H. H. Weber, and E. Meyer-Simon, Z. Anorg. Allgem. Chem., 273, 48 (1953); R. Juza, W. Gieren, and J. Haug, *ibid.*, 300, 61 (1959); R. Juza and J. Haug, *ibid.*, 309, 276 (1961).

<sup>(2)</sup> L. Katz and R. Ward, Inorg. Chem., 3, 205 (1964).

|        |                                       | INDEXIN              | G OF DagResnin F | ROM A-RAY FOW | DER DATA            |                    |       |
|--------|---------------------------------------|----------------------|------------------|---------------|---------------------|--------------------|-------|
| hkl    | $D_{\mathrm{ob}\mathbf{s}\mathrm{d}}$ | $D_{\mathrm{calcd}}$ | $I_{\rm obsd}$   | hkl           | $D_{\mathrm{obsd}}$ | $D_{\text{ealed}}$ | Iobad |
| 200    | 5.470                                 | 5.470                | 10.3             | 153           | 1.580               | 1.581              | 12.8  |
| 020    |                                       | 4.045                | 0                | 4,2,14        | 1.566               | 1.568              | 15.4  |
| 206    | 3.714                                 | 3.717                | 10.3             | 253           | 1.533               | 1.533              | 12.6  |
| 301    | 3.613                                 | 3.621                | 1.97             | 631           | 1.508               | 1.509              | 8.28  |
| 310    | 3.329                                 | 3.325                | 51.5             | 350           | 1.479               | 1.479              | 6.90  |
| 220    | 3.257                                 | 3.252                | 100.0            | 2,0,20        | 1.460               | 1.464              | 8.01  |
| 1,0,10 | 2.927                                 | 2.929                | 60.4             | 452           | 1.383               | 1.386              | 8.88  |
| 400    | 2.738                                 | 2.735                | 82.2             | 800           | 1.367               | 1.367              | 10.1  |
| 130    | 2.617                                 | 2.618                | 27.0             | 640           | 1.354               | 1,353              | 3.2   |
| 133    | 2.535                                 | 2.535                | 1.97             | 162           | 1.334               | 1.333              | 9.47  |
| 229    | 2.332                                 | 2.343                | 15.6             | 815           | 1.313               | 1.316              | 10.1  |
| 420    | 2.264                                 | 2.265                | 4.34             | 820           | 1.295               | 1.296              | 10.1  |
| 510    | 2.111                                 | 2.111                | 19.9             | 4,4,16        | 1.236               | 1.236              | 10.7  |
| 040    | 2.021                                 | 2.022                | 15.4             | 2,5,16        | 1.201               | 1.202              | 4.33  |
| 144    | 1.929                                 | 1.924                | 24.9             | 906           | 1.182               | 1.182              | 21.9  |
| 4,0,12 | 1.857                                 | 1.858                | 29.6             | 173           | 1.141               | 1.142              | 3.10  |
| 601    | 1.821                                 | 1.820                | 18.7             | 751           | 1.122               | 1.123              | 10.5  |
| 4,2,11 | 1.755                                 | 1.752                | 5.92             | 930           | 1.108               | 1.108              | 4.98  |
| 528    | 1.716                                 | 1.717                | 3,35             | 10,0,0        | 1.094               | 1.094              | 4.30  |
| 530    | 1.698                                 | 1.699                | 16.6             | 475           | 1.047               | 1.049              | 15.2  |
| 620    | 1.663                                 | 1.667                | 15.1             | 280           | 0.9947              | 0.9944             | 4.31  |
| 440    | 1.625                                 | 1.626                | 7.30             | 088           | 0.9762              | 0.9772             | 4.30  |
|        |                                       |                      |                  |               |                     |                    |       |

TABLE I INDEXING OF BackeeNia from X-Ray POWDER DATA

8 hr. Finally, the temperature was raised to  $840-850^{\circ}$  for 8 hr to complete the reaction. The deep reddish brown powder was found to be highly sensitive to moisture. A compressed pellet of the compound was found to be a nonconductor at room temperature.

Chemical analysis gave 62.5% Sr, 25.2% Re, and 10.5% N. The total analysis is 98.2%. It is assumed that the strontium analysis is low, since the starting Sr: Re ratio is about 5.5 whereas the analysis gives 5.25. By taking 64.3% Sr, one could deduce a rational formula Sr<sub>27</sub>Re<sup>VI</sup><sub>5</sub>N<sub>28</sub>.

(3) Structure Determination.—The X-ray powder diffraction pattern could be indexed on the basis of a cubic unit cell, a = 5.25 A, which appeared to be of the sodium chloride type. The formula suggests a nitrogen-deficient structure. The density, calculated for Sr<sub>3.375</sub>Re<sub>0.625</sub>N<sub>3.5</sub> per unit cell, is 7.29 g/ml; found, 7.36 g/ml.

This compound appeared to be stoichiometric. No variation in lattice parameter was observed in several preparations including those with excess strontium nitride and those with the unidentified ternary phase.

Space group  $O_h^5$  was used. In the trial structure, the strontium atoms were assumed to be replaced randomly by rhenium atoms. The scattering factor for the cation was then  $(3.375f_{\rm Sr}$  $+ 0.625f_{\rm Re})/4$  and for the nitrogens  $3.5f_N/4$ . The observed intensities were determined by cutting out and weighing tracings of the peaks in the diffraction pattern obtained by use of a GE X-RD-5 diffractometer using Cu K $\alpha$  radiation. Without the use of a temperature factor correction, it was shown that the calculated and observed intensities lay in the same order but that the difference increased progressively with increasing angle. A temperature factor was applied to  $I_{\rm caled}$  in the form

$$kI_{\text{calcd}}e^{-2B(\sin^2\theta)/\lambda^2} = I_{\text{obsd}}$$
 with  $B = 4.5$ 

The results are shown in Table II. This is taken as good evidence that the structure is essentially correct.

 $Sr_9Re_8N_{10}$ .—The thermal decomposition of the cubic phase in vacuo occurs at 740-760° to give a black crystalline product, the structure of which is analogous to the corresponding barium compound. The diffraction pattern is given in Table III, indexed on the basis of an orthorhombic cell: a = 10.38 A, b = 7.70 A, c = 28.62 A. Anal. Calcd for Sr<sub>9</sub>Re<sub>8</sub>N<sub>10</sub>: Sr, 53.02; Re; 37.20; N, 9.42. Found: Sr, 52.18; Re, 37.20; N, 9.57. The compound is an electrical conductor at room temperature.

 $Ba_9Os_3N_{10}$ .—This compound, in contrast to the corresponding rhenium compound, is obtained without the formation of intermediate phases by heating mixtures of barium nitride and osmium powder at 700-750°. Mixtures with Ba: Os = 3 gave products containing no metallic osmium. Excess barium nitride could be removed by washing the product with liquid ammonia containing ammonium nitrate. The diffraction pattern corresponded closely to that of the rhenium compound. It is given in Table IV, indexed on the basis of an orthorhombic cell: a = 10.88 A, b = 8.08 A, c = 29.80 A. The compound is black and is a good conductor at room temperature. Like the rhenium compounds, it is very susceptible to hydrolysis, but it was noticed that some metallic osmium was liberated in the process. The nitrogen content as determined by the Kjeldahl method gave low results. Examination of the gaseous products of hydrolysis in the mass spectrograph revealed the presence of nitrogen. No consistent relationship between the amount of osmium metal formed and the ammonia determined by Kjeldahl analysis was found. The nitrogen was therefore determined by measuring volumetrically the quantity of nitrogen absorbed in the synthesis using the stoichiometry indicated by the equation  $3Ba_3N_2 + 3Os + 2N_2$  $\rightarrow$  Ba<sub>9</sub>Os<sub>3</sub>N<sub>10</sub>. Anal. Calcd for Ba<sub>9</sub>Os<sub>3</sub>N<sub>10</sub>: Ba, 63.50; Os, 29.31; N, 7.19. Found: Ba, 63.57; Os, 28.93; N, 6.96. Attempts to prepare strontium compounds of osmium were not successful. Preparations using mixtures of strontium and barium nitride with osmium metal gave heterogeneous products.

TABLE II X-RAY POWDER DIFFRACTION DATA FOR ST27Re5N28

|     | Sin    | n² θ   |      | I———— |     | Sir    | 2 θ    |      | <i>I</i> |
|-----|--------|--------|------|-------|-----|--------|--------|------|----------|
| hkl | Obsd   | Calcd  | Obsd | Calcd | hkl | Obsd   | Calcd  | Obsd | Calcd    |
| 111 | 0.0647 | 0.0647 | 100  | 100   | 400 | 0.3455 | 0.3450 | 10.4 | 13.9     |
| 200 | 0.0863 | 0.0863 | 86.5 | 91.2  | 331 | 0.4097 | 0.4097 | 16.6 | 19.7     |
| 200 | 0.1726 | 0.1725 | 63.5 | 64.2  | 420 | 0.4313 | 0.4313 | 20.2 | 23.8     |
| 311 | 0.2373 | 0.2372 | 50.5 | 47.3  | 422 | 0.5174 | 0.5176 | 26.4 | 19.4     |
| 222 | 0.2590 | 0.2580 | 18.7 | 19.3  |     |        |        |      |          |

|                                                                                                                                         |                                                                                                                                                       | INDEXI                                                                                                                                                         | NG OF OI SI SICES 10                                                                                                                                         | FROM A-RAY FOWDER                                                                                                                                            | DATA                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hkl                                                                                                                                     | $D_{ m obsd}$                                                                                                                                         | $D_{\mathrm{calcd}}$                                                                                                                                           | Iobsd                                                                                                                                                        | hkl                                                                                                                                                          | $D_{\mathrm{obsd}}$                                                                                                                                                      | $D_{calcd}$                                                                                                                                                                             | $I_{\rm obsd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 200                                                                                                                                     | 5.173                                                                                                                                                 | 5,195                                                                                                                                                          | 24.9                                                                                                                                                         | 153                                                                                                                                                          | 1.503                                                                                                                                                                    | 1.503                                                                                                                                                                                   | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 020                                                                                                                                     | 3.834                                                                                                                                                 | 3,845                                                                                                                                                          | 4.37                                                                                                                                                         | 4,2,14                                                                                                                                                       | 1.482                                                                                                                                                                    | 1.485                                                                                                                                                                                   | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 206                                                                                                                                     | 3.515                                                                                                                                                 | 3.522                                                                                                                                                          | 32,6                                                                                                                                                         | 253                                                                                                                                                          | 1.455                                                                                                                                                                    | 1.457                                                                                                                                                                                   | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 301                                                                                                                                     | 3.437                                                                                                                                                 | 3.439                                                                                                                                                          | 2.20                                                                                                                                                         | 630                                                                                                                                                          | 1.434                                                                                                                                                                    | 1,435                                                                                                                                                                                   | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 310                                                                                                                                     | 3.162                                                                                                                                                 | 3.157                                                                                                                                                          | 35.8                                                                                                                                                         | 350                                                                                                                                                          | 1.406                                                                                                                                                                    | 1.405                                                                                                                                                                                   | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 220                                                                                                                                     | 3.097                                                                                                                                                 | 3.091                                                                                                                                                          | 100                                                                                                                                                          | 2,0,20                                                                                                                                                       | 1.379                                                                                                                                                                    | 1.378                                                                                                                                                                                   | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,0,10                                                                                                                                  | 2.763                                                                                                                                                 | 2.771                                                                                                                                                          | 74.6                                                                                                                                                         | 452                                                                                                                                                          | 1.316                                                                                                                                                                    | 1.318                                                                                                                                                                                   | 10.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 400                                                                                                                                     | 2.598                                                                                                                                                 | 2.598                                                                                                                                                          | 97.7                                                                                                                                                         | 800                                                                                                                                                          | 1.297                                                                                                                                                                    | 1.299                                                                                                                                                                                   | 6.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 130                                                                                                                                     | 2.489                                                                                                                                                 | 2.489                                                                                                                                                          | 22.0                                                                                                                                                         | 640                                                                                                                                                          | 1.287                                                                                                                                                                    | 1.287                                                                                                                                                                                   | 9.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 133                                                                                                                                     | 2.402                                                                                                                                                 | 2.408                                                                                                                                                          | 14.6                                                                                                                                                         | 162                                                                                                                                                          | 1.267                                                                                                                                                                    | 1.267                                                                                                                                                                                   | 10.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 229                                                                                                                                     | 2.222                                                                                                                                                 | 2,221                                                                                                                                                          | 31,0                                                                                                                                                         | 815                                                                                                                                                          | 1.248                                                                                                                                                                    | 1.250                                                                                                                                                                                   | 2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 420                                                                                                                                     | 2.151                                                                                                                                                 | 2,152                                                                                                                                                          | 10.2                                                                                                                                                         | 820                                                                                                                                                          | 1.229                                                                                                                                                                    | 1.230                                                                                                                                                                                   | 8.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 510                                                                                                                                     | 2.003                                                                                                                                                 | 2.00                                                                                                                                                           | 13.5                                                                                                                                                         | 4,4,16                                                                                                                                                       | 1.172                                                                                                                                                                    | 1.169                                                                                                                                                                                   | 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 040                                                                                                                                     | 1.925                                                                                                                                                 | 1.92                                                                                                                                                           | 14.6                                                                                                                                                         | 2,5,16                                                                                                                                                       | 1.137                                                                                                                                                                    | 1.138                                                                                                                                                                                   | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 144                                                                                                                                     | 1.828                                                                                                                                                 | 1.828                                                                                                                                                          | 20.4                                                                                                                                                         | 906                                                                                                                                                          | $1.122^{\circ}$                                                                                                                                                          | 1.122                                                                                                                                                                                   | 20.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4,0,12                                                                                                                                  | 1.757                                                                                                                                                 | 1.761                                                                                                                                                          | 37.01                                                                                                                                                        | 173                                                                                                                                                          | 1.084                                                                                                                                                                    | 1.085                                                                                                                                                                                   | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 601                                                                                                                                     | 1.728                                                                                                                                                 | 1,729                                                                                                                                                          | 32.0                                                                                                                                                         | 751                                                                                                                                                          | 1.067                                                                                                                                                                    | 1.067                                                                                                                                                                                   | 11.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4,2,11                                                                                                                                  | 1.659                                                                                                                                                 | 1.661                                                                                                                                                          | 7,90                                                                                                                                                         | 930                                                                                                                                                          | 1.051                                                                                                                                                                    | 1.053                                                                                                                                                                                   | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 528                                                                                                                                     | 1.631                                                                                                                                                 | 1.629                                                                                                                                                          | 10.4                                                                                                                                                         | 10,0,0                                                                                                                                                       | 1.037                                                                                                                                                                    | 1.039                                                                                                                                                                                   | 4.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 530                                                                                                                                     | 1.611                                                                                                                                                 | 1,614                                                                                                                                                          | 11.9                                                                                                                                                         | 475                                                                                                                                                          | 0.9961                                                                                                                                                                   | 0.9965                                                                                                                                                                                  | 8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 620                                                                                                                                     | 1.578                                                                                                                                                 | 1.579                                                                                                                                                          | 15.6                                                                                                                                                         | 280                                                                                                                                                          | 0.9457                                                                                                                                                                   | 0.9452                                                                                                                                                                                  | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 440                                                                                                                                     | 1.545                                                                                                                                                 | 1.545                                                                                                                                                          | 5,61                                                                                                                                                         | 088                                                                                                                                                          | 0.9282                                                                                                                                                                   | 0.9286                                                                                                                                                                                  | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                         |                                                                                                                                                       | Indexi                                                                                                                                                         | TA<br>NG OF Ba9Os3N10                                                                                                                                        | able IV<br>from X-Ray Powder                                                                                                                                 | DATA                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| hkl                                                                                                                                     | $\mathcal{D}_{\mathrm{obsd}}$                                                                                                                         | $D_{\mathrm{calcd}}$                                                                                                                                           | Iobsd                                                                                                                                                        | hkl                                                                                                                                                          | $D_{ m obsd}$                                                                                                                                                            | $D_{\mathrm{calcd}}$                                                                                                                                                                    | $I_{\rm obsd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 200                                                                                                                                     | 5,438                                                                                                                                                 | 5.440                                                                                                                                                          | 7.95                                                                                                                                                         | 153                                                                                                                                                          | 1.580                                                                                                                                                                    | 1.578                                                                                                                                                                                   | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 020                                                                                                                                     |                                                                                                                                                       | 4.040                                                                                                                                                          | 0                                                                                                                                                            | 4,2,14                                                                                                                                                       | 1.547                                                                                                                                                                    | 1,548                                                                                                                                                                                   | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 206                                                                                                                                     | 3.695                                                                                                                                                 | 3.668                                                                                                                                                          | 7 10                                                                                                                                                         | 252                                                                                                                                                          | 1 590                                                                                                                                                                    | 1 520                                                                                                                                                                                   | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 301                                                                                                                                     | 3.607                                                                                                                                                 | ~~                                                                                                                                                             | 1.10                                                                                                                                                         | - 200                                                                                                                                                        | 1.030                                                                                                                                                                    | 1.000                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 310                                                                                                                                     | 0.001                                                                                                                                                 | 3.600                                                                                                                                                          | 1.14                                                                                                                                                         | 631                                                                                                                                                          | 1.505                                                                                                                                                                    | 1,502                                                                                                                                                                                   | 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                         | 3,312                                                                                                                                                 | 3.600<br>3.309                                                                                                                                                 | 1.14<br>46.8                                                                                                                                                 | 631<br>350                                                                                                                                                   | 1.530<br>1.505<br>1.475                                                                                                                                                  | 1.502<br>1.476                                                                                                                                                                          | $     18.8 \\     7.10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 220                                                                                                                                     | 3.312<br>3.245                                                                                                                                        | 3.600<br>3.309<br>3.243                                                                                                                                        | 1,14<br>46.8<br>100                                                                                                                                          | 631<br>350<br>2,0,20                                                                                                                                         | 1.530<br>1.505<br>1.475<br>1.439                                                                                                                                         | $   \begin{array}{r}     1.330 \\     1.502 \\     1.476 \\     1.437 \end{array} $                                                                                                     | $     18.8 \\     7.10 \\     10.5 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 220<br>1,0,10                                                                                                                           | 3.312<br>3.245<br>2.875                                                                                                                               | 3.600<br>3.309<br>3.243<br>2.873                                                                                                                               | $     1.14 \\     46.8 \\     100 \\     57.1   $                                                                                                            | 631<br>350<br>2,0,20<br>452                                                                                                                                  | 1.530<br>1.505<br>1.475<br>1.439<br>1.382                                                                                                                                | 1.330<br>1.502<br>1.476<br>1.437<br>1.383                                                                                                                                               | $     18.8 \\     7.10 \\     10.5 \\     12.8 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 220<br>1,0,10<br>400                                                                                                                    | 3.3123.2452.8752.720                                                                                                                                  | 3.600<br>3.309<br>3.243<br>2.873<br>2.720                                                                                                                      | $     1.14 \\     46.8 \\     100 \\     57.1 \\     73.9   $                                                                                                | 631<br>350<br>2,0,20<br>452<br>800                                                                                                                           | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358                                                                                                                       | 1.502<br>1.476<br>1.437<br>1.383<br>1.360                                                                                                                                               | 18.8<br>7.10<br>10.5<br>12.8<br>3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 220<br>1,0,10<br>400<br>130                                                                                                             | 3.312<br>3.245<br>2.875<br>2.720<br>2.619                                                                                                             | 3.600<br>3.309<br>3.243<br>2.873<br>2.720<br>2.614                                                                                                             | $     1.10 \\     1.14 \\     46.8 \\     100 \\     57.1 \\     73.9 \\     22.7 $                                                                          | 233<br>631<br>350<br>2,0,20<br>452<br>800<br>640                                                                                                             | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348                                                                                                              | 1.350<br>1.502<br>1.476<br>1.437<br>1.383                                                                                                                                               | $     18.8 \\     7.10 \\     10.5 \\     12.8 \\     3.12 \\     7.10   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 220<br>1,0,10<br>400<br>130<br>133                                                                                                      | $\begin{array}{c} 3.312\\ 3.245\\ 2.875\\ 2.720\\ 2.619\\ 2.531\end{array}$                                                                           | 3.600<br>3.309<br>3.243<br>2.873<br>2.720<br>2.614<br>2.528                                                                                                    | $ \begin{array}{c} 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ \end{array} $                                                                             | $ \begin{array}{r} 233\\631\\350\\2,0,20\\452\\800\\640\\162\end{array} $                                                                                    | 1.330<br>1.505<br>1.475<br>1.382<br>1.358<br>1.348<br>1.331                                                                                                              | 1.350<br>1.4502<br>1.476<br>1.437<br>1.383<br>1.360<br>1.349<br>1.331                                                                                                                   | $18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 220<br>1,0,10<br>400<br>130<br>133<br>229                                                                                               | $\begin{array}{c} 3.312\\ 3.245\\ 2.875\\ 2.720\\ 2.619\\ 2.531\\ 2.333\end{array}$                                                                   | $\begin{array}{c} 3.600\\ 3.309\\ 3.243\\ 2.873\\ 2.720\\ 2.614\\ 2.528\\ 2.317\end{array}$                                                                    | $ \begin{array}{c} 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ \end{array} $                                                                      | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\end{array}$                                                                         | 1.330<br>1.505<br>1.475<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311                                                                                                     | 1.350<br>1.502<br>1.476<br>1.437<br>1.383<br>1.360<br>1.349<br>1.331<br>1.308                                                                                                           | $18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 220<br>1,0,10<br>400<br>130<br>133<br>229<br>420                                                                                        | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254                                                                                  | $\begin{array}{c} 3.600\\ 3.309\\ 3.243\\ 2.873\\ 2.720\\ 2.614\\ 2.528\\ 2.317\\ 2.256\\ \end{array}$                                                         | $\begin{array}{c} 1.10\\ 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\end{array}$                                                             | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ \end{array}$                                                                | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287                                                                                   | 1.350<br>1.502<br>1.476<br>1.437<br>1.383 22<br>1.360<br>1.349<br>1.331<br>1.308<br>1.289                                                                                               | $18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 220<br>1,0,10<br>400<br>130<br>133<br>229<br>420<br>510                                                                                 | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254<br>2.100                                                                         | $\begin{array}{c} 3.600\\ 3.309\\ 3.243\\ 2.873\\ 2.720\\ 2.614\\ 2.528\\ 2.317\\ 2.256\\ 2.100\\ \end{array}$                                                 | $\begin{array}{c} 1.10\\ 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\\ 18.8\end{array}$                                                      | $\begin{array}{c} 233\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ 4,4,16\end{array}$                                                          | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287<br>1.222                                                                          | 1.350<br>1.502<br>1.476<br>1.437<br>1.383 22<br>1.360<br>1.349<br>1.331<br>1.308<br>1.289<br>1.223                                                                                      | $18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23 \\ 12.5 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 220<br>1,0,10<br>400<br>130<br>133<br>229<br>420<br>510<br>040                                                                          | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254<br>2.100<br>2.021                                                                | $\begin{array}{c} 3.600\\ 3.309\\ 3.243\\ 2.873\\ 2.720\\ 2.614\\ 2.528\\ 2.317\\ 2.256\\ 2.100\\ 2.020\\ \end{array}$                                         | $\begin{array}{c} 1.10\\ 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\\ 18.8\\ 14.8\end{array}$                                               | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ 4,4,16\\ 2,5,16\end{array}$                                                 | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287<br>1.222<br>1.193                                                                 | 1.550<br>1.502<br>1.476<br>1.437<br>1.383<br>1.360<br>1.349<br>1.331<br>1.308<br>1.289<br>1.223<br>1.191                                                                                | $18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23 \\ 12.5 \\ 3.12 \\ 5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 3.12 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.$ |
| 220<br>1,0,10<br>400<br>130<br>133<br>229<br>420<br>510<br>040<br>144                                                                   | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254<br>2.100<br>2.021<br>1.929                                                       | 3.600<br>3.309<br>3.243<br>2.720<br>2.614<br>2.528<br>2.317<br>2.256<br>2.100<br>2.020<br>1.919                                                                | $\begin{array}{c} 1.10\\ 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\\ 18.8\\ 14.8\\ 30.9\end{array}$                                        | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ 4,4,16\\ 2,5,16\\ 906\\ \end{array}$                                        | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287<br>1.222<br>1.193<br>1.174                                                        | 1.550<br>1.502<br>1.476<br>1.437<br>1.383<br>1.360<br>1.349<br>1.331<br>1.308<br>1.289<br>1.223<br>1.191<br>1.175                                                                       | $\begin{array}{c} 18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23 \\ 12.5 \\ 3.12 \\ 12.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} 220\\ 1,0,10\\ 400\\ 130\\ 133\\ 229\\ 420\\ 510\\ 040\\ 144\\ 4,0,12 \end{array}$                                    | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254<br>2.100<br>2.021<br>1.929<br>1.838                                              | 3.600<br>3.309<br>3.243<br>2.720<br>2.614<br>2.528<br>2.317<br>2.256<br>2.100<br>2.020<br>1.919<br>1.834                                                       | $\begin{array}{c} 1.10\\ 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\\ 18.8\\ 14.8\\ 30.9\\ 28.1 \end{array}$                                | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ 4,4,16\\ 2,5,16\\ 906\\ 173\\ \end{array}$                                  | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287<br>1.222<br>1.193<br>1.174<br>1.140                                               | 1.550<br>1.502<br>1.476<br>1.437<br>1.383<br>1.360<br>1.349<br>1.331<br>1.308<br>1.289<br>1.223<br>1.191<br>1.175<br>1.140                                                              | $\begin{array}{c} 18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23 \\ 12.5 \\ 3.12 \\ 12.1 \\ 2.83 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 220\\ 1,0,10\\ 400\\ 130\\ 133\\ 229\\ 420\\ 510\\ 040\\ 144\\ 4,0,12\\ 601\\ \end{array}$                            | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254<br>2.100<br>2.021<br>1.929<br>1.838<br>1.807                                     | 3.600<br>3.309<br>3.243<br>2.873<br>2.720<br>2.614<br>2.528<br>2.317<br>2.256<br>2.100<br>2.020<br>1.919<br>1.834<br>1.810                                     | $\begin{array}{c} 1.16\\ 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\\ 18.8\\ 14.8\\ 30.9\\ 28.1\\ 26.1\\ \end{array}$                       | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ 4,4,16\\ 2,5,16\\ 906\\ 173\\ 751\\ \end{array}$                            | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287<br>1.222<br>1.193<br>1.174<br>1.140<br>1.121                                      | 1.550<br>1.502<br>1.476<br>1.437<br>1.383<br>1.360<br>1.349<br>1.331<br>1.308<br>1.289<br>1.223<br>1.191<br>1.175<br>1.140<br>1.119                                                     | $\begin{array}{c} 18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23 \\ 12.5 \\ 3.12 \\ 12.1 \\ 2.83 \\ 10.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} 220\\ 1,0,10\\ 400\\ 130\\ 133\\ 229\\ 420\\ 510\\ 040\\ 144\\ 4,0,12\\ 601\\ 4,2,11 \end{array}$                     | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254<br>2.100<br>2.021<br>1.929<br>1.838<br>1.807<br>1.731                            | 3.600<br>3.309<br>3.243<br>2.873<br>2.720<br>2.614<br>2.528<br>2.317<br>2.256<br>2.100<br>2.020<br>1.919<br>1.834<br>1.810<br>1.734                            | $\begin{array}{c} 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\\ 18.8\\ 14.8\\ 30.9\\ 28.1\\ 26.1\\ 11.08\end{array}$                         | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ 4,4,16\\ 2,5,16\\ 906\\ 173\\ 751\\ 930\\ \end{array}$                      | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287<br>1.222<br>1.193<br>1.174<br>1.140<br>1.121<br>1.104                             | $\begin{array}{c} 1.550\\ 1.502\\ 1.476\\ 1.437\\ 1.383\\ 1.360\\ 1.349\\ 1.331\\ 1.308\\ 1.289\\ 1.223\\ 1.191\\ 1.175\\ 1.140\\ 1.119\\ 1.103\\ \end{array}$                          | $\begin{array}{c} 18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23 \\ 12.5 \\ 3.12 \\ 12.1 \\ 2.83 \\ 10.5 \\ 5.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 220\\ 1,0,10\\ 400\\ 130\\ 133\\ 229\\ 420\\ 510\\ 040\\ 144\\ 4,0,12\\ 601\\ 4,2,11\\ 528\\ \end{array}$             | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254<br>2.100<br>2.021<br>1.929<br>1.838<br>1.807<br>1.731<br>1.710                   | 3.600<br>3.309<br>3.243<br>2.873<br>2.720<br>2.614<br>2.528<br>2.317<br>2.256<br>2.100<br>2.020<br>1.919<br>1.834<br>1.810<br>1.734<br>1.704                   | $\begin{array}{c} 1.10\\ 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\\ 18.8\\ 14.8\\ 30.9\\ 28.1\\ 26.1\\ 11.08\\ 5.00\\ \end{array}$        | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ 4,4,16\\ 2,5,16\\ 906\\ 173\\ 751\\ 930\\ 10,0,0\end{array}$                | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287<br>1.222<br>1.193<br>1.174<br>1.140<br>1.121<br>1.044<br>1.088                    | $\begin{array}{c} 1.550\\ 1.502\\ 1.476\\ 1.437\\ 1.383\\ 1.360\\ 1.349\\ 1.331\\ 1.308\\ 1.289\\ 1.223\\ 1.191\\ 1.175\\ 1.140\\ 1.119\\ 1.103\\ 1.088\\ \end{array}$                  | $\begin{array}{c} 18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23 \\ 12.5 \\ 3.12 \\ 12.1 \\ 2.83 \\ 10.5 \\ 5.00 \\ 4.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} 220\\ 1,0,10\\ 400\\ 130\\ 133\\ 229\\ 420\\ 510\\ 040\\ 144\\ 4,0,12\\ 601\\ 4,2,11\\ 528\\ 530\\ \end{array}$       | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254<br>2.100<br>2.021<br>1.929<br>1.838<br>1.807<br>1.731<br>1.710<br>1.692          | 3.600<br>3.309<br>3.243<br>2.873<br>2.720<br>2.614<br>2.528<br>2.317<br>2.256<br>2.100<br>2.020<br>1.919<br>1.834<br>1.810<br>1.734<br>1.704<br>1.692          | $\begin{array}{c} 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\\ 18.8\\ 14.8\\ 30.9\\ 28.1\\ 26.1\\ 11.08\\ 5.00\\ 19.6\\ \end{array}$        | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ 4,4,16\\ 2,5,16\\ 906\\ 173\\ 751\\ 930\\ 10,0,0\\ 475\\ \end{array}$       | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287<br>1.222<br>1.193<br>1.174<br>1.140<br>1.121<br>1.104<br>1.088<br>1.044           | $\begin{array}{c} 1.550\\ 1.502\\ 1.476\\ 1.437\\ 1.383\\ 1.360\\ 1.349\\ 1.331\\ 1.308\\ 1.289\\ 1.223\\ 1.191\\ 1.175\\ 1.140\\ 1.119\\ 1.103\\ 1.088\\ 1.046\\ \end{array}$          | $\begin{array}{c} 18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23 \\ 12.5 \\ 3.12 \\ 12.1 \\ 2.83 \\ 10.5 \\ 5.00 \\ 4.00 \\ 12.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 220\\ 1,0,10\\ 400\\ 130\\ 133\\ 229\\ 420\\ 510\\ 040\\ 144\\ 4,0,12\\ 601\\ 4,2,11\\ 528\\ 530\\ 620\\ \end{array}$ | 3.312<br>3.245<br>2.875<br>2.720<br>2.619<br>2.531<br>2.333<br>2.254<br>2.100<br>2.021<br>1.929<br>1.838<br>1.807<br>1.731<br>1.710<br>1.692<br>1.653 | 3.600<br>3.309<br>3.243<br>2.873<br>2.720<br>2.614<br>2.528<br>2.317<br>2.256<br>2.100<br>2.020<br>1.919<br>1.834<br>1.810<br>1.734<br>1.704<br>1.692<br>1.654 | $\begin{array}{c} 1.14\\ 46.8\\ 100\\ 57.1\\ 73.9\\ 22.7\\ 5.96\\ 19.3\\ 5.68\\ 18.8\\ 14.8\\ 30.9\\ 28.1\\ 26.1\\ 11.08\\ 5.00\\ 19.6\\ 14.5\\ \end{array}$ | $\begin{array}{c} 253\\ 631\\ 350\\ 2,0,20\\ 452\\ 800\\ 640\\ 162\\ 815\\ 820\\ 4,4,16\\ 2,5,16\\ 906\\ 173\\ 751\\ 930\\ 10,0,0\\ 475\\ 280\\ \end{array}$ | 1.330<br>1.505<br>1.475<br>1.439<br>1.382<br>1.358<br>1.348<br>1.331<br>1.311<br>1.287<br>1.222<br>1.193<br>1.174<br>1.140<br>1.121<br>1.104<br>1.088<br>1.044<br>0.9938 | $\begin{array}{c} 1.550\\ 1.502\\ 1.476\\ 1.437\\ 1.383\\ 1.360\\ 1.349\\ 1.331\\ 1.308\\ 1.289\\ 1.223\\ 1.191\\ 1.175\\ 1.140\\ 1.119\\ 1.103\\ 1.088\\ 1.046\\ 0.9930\\ \end{array}$ | $\begin{array}{c} 18.8 \\ 7.10 \\ 10.5 \\ 12.8 \\ 3.12 \\ 7.10 \\ 12.5 \\ 11.9 \\ 8.23 \\ 12.5 \\ 3.12 \\ 12.1 \\ 2.83 \\ 10.5 \\ 5.00 \\ 4.00 \\ 12.3 \\ 4.21 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

TABLE III

The diffraction patterns indicated only a very slight solubility of strontium in the barium phase.

(4) Magnetic Susceptibilities.—The magnetic susceptibilities for all of the compounds which were obtained pure were measured from 77 to 300°K, about 30 readings being taken over the temperature range. Some of the temperature and magnetic susceptibility values per mole of transition metal corrected for diamagnetism are given in Table V.

The plot of  $1/\chi_{\rm M}$  vs. T for Sr<sub>9</sub>Re<sub>3</sub>N<sub>10</sub> and for Ba<sub>9</sub>Re<sub>3</sub>N<sub>10</sub> was concave to the T axis. Corrections were made for a temperatureindependent paramagnetism (377  $\times 10^{-6}$  cgs unit for the strontium compound,  $210 \times 10^{-6}$  cgs unit for the barium compound). With these corrections, linear plots of  $1/\chi_{\rm M}$  vs. T were obtained which gave for the strontium compound a Weiss constant  $\theta = 32.7^{\circ}$  and  $\mu_{\rm eff} = 0.52$  BM and for the barium compound  $\theta = 12.6^{\circ}$  and  $\mu_{\rm eff} = 0.45$  BM.

The  $1/\chi_M$  vs. T plot for the osmium compound required no correction. It gave  $\theta = 164.4^{\circ}$  and  $\mu_{eff} = 1.76$  BM.

|                                                 |      | TAI  | BLE V |      |     |     |  |  |  |
|-------------------------------------------------|------|------|-------|------|-----|-----|--|--|--|
| $\mathbf{Sr}_{9}\mathbf{Re}_{3}\mathbf{N}_{10}$ |      |      |       |      |     |     |  |  |  |
| <i>T</i> , °K                                   | 79   | 90   | 112   | 139  | 204 | 293 |  |  |  |
| $10^6 \chi_{ m M}$                              | 817  | 794  | 749   | 688  | 666 | 625 |  |  |  |
| $Ba_{\theta}Re_{\delta}N_{10}$                  |      |      |       |      |     |     |  |  |  |
| <i>T</i> , °K                                   | 79   | 90   | 106   | 157  | 216 | 294 |  |  |  |
| $10^6 \chi_M$                                   | 480  | 460  | 419   | 349  | 311 | 283 |  |  |  |
| $Ba_9Os_3N_{10}$                                |      |      |       |      |     |     |  |  |  |
| <i>Τ</i> , °K                                   | 79   | 85   | 100   | 173  | 215 | 295 |  |  |  |
| $10^{6}\chi_{M}$                                | 1572 | 1528 | 1441  | 1119 | 998 | 826 |  |  |  |
| $\mathrm{Sr}_{27}\mathrm{Re}_5\mathrm{N}_{28}$  |      |      |       |      |     |     |  |  |  |
| T, °K                                           | 79   | 102  | 154   | 207  | 254 | 293 |  |  |  |
| $10^{6} \chi_{M}$                               | 481  | 474  | 467   | 465  | 463 | 458 |  |  |  |

The data for  $Sr_{27}Re_5N_{28}$  are uncorrected for a small ferromagnetic impurity. From the corrected data, the room temperature moment ( $\mu_{eff} = \sqrt{\chi_M T}$ ) is 0.91 BM.



Rhenium substitution for Strontium at A and B, C or D. (a)



Figure 2.—Model for the proposed structure of  $Sr_{27}Re_5N_{28}$ based on random substitution of rhenium for strontium and ordered nitrogen vacancies.

## Discussion

The experimental results show that the oxidation states in all of the compounds isolated are below the maximum for the transition metals, rhenium and osmium. This is a notable difference from the ternary nitrides obtained by Juza with lithium.

It is possible that some of the intermediate phases in the barium-rhenium and strontium-rhenium systems may contain heptavalent rhenium, but these are not stable compounds. The barium-rhenium nitride in which Ba:Re is approximately 3.5 is close to the composition which could be represented as  $Ba_7Re^{VII}-Re^{VI}N_9$ , but a slight nitrogen deficiency could give all of the rhenium as Re(VI). The reddish brown color, very similar to that of  $Sr_{27}Re_5N_{28}$ , might be taken as support for the second possibility.

The low-temperature phase in the strontiumrhenium system identified as  $Sr_{27}Re_5N_{28}$  has some peculiar properties which deserve attention. The X-ray diffraction data strongly suggest that the rhenium and strontium are randomly distributed over the cation sites of a sodium chloride type lattice. No indication of ordering lines was observed, yet the compound appears to be quite stoichiometric. An explanation for this phenomenon can be given on two assumptions: (1) that the rhenium ions, having such a high charge relative to the strontium ions, are not permitted to share a nitrogen and (2) that the nitrogen vacancies are ordered. The small cubic cell (a = 5.25 A) conInorganic Chemistry

tains 4 cations and  $3^{1}/_{2}$  nitride ions. If a rhenium atom occupies a corner position A (Figure 2a), the nearest rhenium atom to it could occupy a face center position B, C, or D. Nitride ions removed from two of the edges would then give a formula for the small cell Sr38/8 Re5/8 N31/2. Eight of these units give the formula Sr<sub>27</sub>Re<sub>5</sub>N<sub>28</sub>. The four nitrogen vacancies are arranged in the positions indicated in Figure 2b. alternate small cubes having vacancies. This is the same arrangement as the cation vacancies in the compound Mg6MnO8.3 If we suppose a rhenium ion to lie at the center of the eight cubes indicated in Figure 2b, the other four would lie at the centers of the faces of the small cubes which are on the outside of the cell. To do this without allowing any of the rheniums to share nitrogens requires that the four rheniums be distributed randomly. The adjacent cells need not contain a rhenium at the center. Hence, the rhenium ions could be randomly distributed.

This structure suggests that one rhenium ion is in sixfold coordination with nitrogen and four are in fivefold coordination while seven strontium ions are in sixfold coordination and twenty in fivefold coordination. The charge balance is very favorable with this arrangement. A nitrogen vacancy in a nitride lattice creates a highly charged positive hole. It is perhaps reasonable to suppose that the electron of the neighboring Re(VI) ion would be drawn into this site. Perhaps the peculiar magnetic behavior of this compound is due to this phenomenon.

Little can yet be said about the compounds Ba<sub>9</sub>-Re<sub>3</sub>N<sub>10</sub>, Sr<sub>9</sub>Re<sub>3</sub>N<sub>10</sub>, and Ba<sub>9</sub>Os<sub>3</sub>N<sub>10</sub>. The determination of the structure must await single-crystal X-ray analysis. Attempts are being made to grow single crystals. The magnetic properties, however, suggest a strong interaction between the transition metal ions. It would seem reasonable to suggest that the rhenium(IV) atoms are in a triangular arrangement with shared nitrogens somewhat in the nature of the metal cluster in Mg<sub>2</sub>Mo<sub>3</sub>O<sub>8</sub>.<sup>4,5</sup> Such a structure could derive readily from one containing close-packed nitride ions. The low magnetic moment of about 0.5 BM/rhenium(IV) ion could be due to a metal-metal bond which required eight electrons per cluster of three rheniums leaving one unpaired electron per cluster. The larger moment of 1.76 BM for the osmium compound lends support to this idea.

Acknowledgment.—Much of this work was supported by National Science Foundation Grant GP3461. We wish to thank Dr. Carl Moeller and Dr. Alan Callaghan for assistance in measuring the magnetic susceptibilities and Dr. Lewis Katz for advice in the interpretation of X-ray diffraction data. Thanks are also due to Dr. A. F. Wells<sup>6</sup> for helpful discussions of the structure.

- (3) J. S. Kasper and J. S. Prener, Acta Cryst., 7, 246 (1954).
- (4) W. H. McCarroll, L. Katz, and R. Ward, J. Am. Chem. Soc., 79, 5410 (1957).
- (5) F. A. Cotton, Inorg. Chem., 3, 1217 (1964).

(6) National Science Foundation Visiting Foreign Senior Scientist at The University of Connecticut, 1965-1986.